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● LLMs excel in several NLP tasks but struggle with long-context, 
cross-lingual reasoning.

● Information is often scattered across languages and lengthy 
documents.

● Retrieval-Augmented Generation (RAG) helps but fails in multi-target 
reasoning.

Key Contributions:

● Propose NSAR framework – a neurosymbolic method that merges 
symbolic reasoning with neural inference for verifiable, interpretable 
pathways.

● Develop NSAR prompt for fact extraction and Python code generation.
● Combine with CoT, ReAct, Self-Reflection for additional gains.
● Experiments show NSAR outperforms retrieval-based and neural-only 

methods in cross-lingual, long-context question answering tasks.

Introduction

NeuroSymbolic Augmented Reasoning (NSAR)

Dataset
● Extended mLongRR dataset: Up to 512k words (really long context).
● 7 languages (English, Vietnamese, Swahili, Persian, Russian, Hindi, 

Arabic).
● Query in English; context in target language.
● Contexts: News articles of 2k-512k words; needles in haystack language.
● 3 "needles" (e.g., "The special magic {city} number is: {number}") 
Evaluation

● Query "What is the largest special magic number?"
● Retrieve and reason over multiple needles.
Models & Baselines

● Models: GPT-4o-mini, Llama 3.2 (90B).
● Baselines: RAG-Vanilla, CoT, ReAct, Self-Reflection.
● Hybrid: NSAR+3 (NSAR + CoT + ReAct + Self-Reflection).

Experiments

Results & Analysis

Long 
context 

text

Query

Embedding 
model 

(e.g. bge-m3)
Tokenizer Extract 

Symbolic 
Facts

Write 
Python 
Code

NSAR 
Prompt

Run 
Python 
code

Retrieval Component NeuroSymbolic Augmented Reasoning (NSAR)

LLM
Sentence 
Selection Answer

NeuroSymbolic Augmented Reasoning (NSAR)

● Addresses LLM limitations in reliability and interpretability for multi-target tasks.
● NSAR Prompt guides 3 stages:

i. Symbolic Fact Extraction: e.g., FACT("Cairo", "special_magic_number", 
1234567)

ii. Python Code Generation: e.g., numbers = [1234567, 9999999]; answer = 
max(numbers)

iii. Final Answer Extraction: Execute code for deterministic output.

●

Retrieval Component

● Tokenize long, multilingual context into sentences using Punkt 
tokenizer.

● Embed with bge-m3 embedding (multilingual, 1024-dim).
● Compute semantic distance to query; select top-k sentences 

(k=3,5,10,20,50).

Sample output

1. Extracting relevant facts from the 
context: 
FACT(Barcelona, magic_number, 3261366) 
FACT(Damascus, magic_number, 3745066) 
FACT(Sofia, magic_number, 9396103) 

2. Generating executable Python code: 

# Define the magic numbers as a dictionary
magic_numbers = { "Barcelona": 3261366, 

"Damascus": 3745066, 
"Sofia": 9396103 }

# Find the largest magic number
largest_magic_number = max(magic_numbers.values()) 
largest_magic_number
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