
Sina Bagheri Nezhad, Ameeta Agrawal
Portland State University, USA

Enhancing Large Language Models with
Neurosymbolic Reasoning for

Multilingual Tasks

NeSy 2025

● LLMs excel in several NLP tasks but struggle with long-context,
cross-lingual reasoning.

● Information is often scattered across languages and lengthy
documents.

● Retrieval-Augmented Generation (RAG) helps but fails in multi-target
reasoning.

Key Contributions:

● Propose NSAR framework – a neurosymbolic method that merges
symbolic reasoning with neural inference for verifiable, interpretable
pathways.

● Develop NSAR prompt for fact extraction and Python code generation.
● Combine with CoT, ReAct, Self-Reflection for additional gains.
● Experiments show NSAR outperforms retrieval-based and neural-only

methods in cross-lingual, long-context question answering tasks.

Introduction

NeuroSymbolic Augmented Reasoning (NSAR)

Dataset
● Extended mLongRR dataset: Up to 512k words (really long context).
● 7 languages (English, Vietnamese, Swahili, Persian, Russian, Hindi,

Arabic).
● Query in English; context in target language.
● Contexts: News articles of 2k-512k words; needles in haystack language.
● 3 "needles" (e.g., "The special magic {city} number is: {number}")
Evaluation

● Query "What is the largest special magic number?"
● Retrieve and reason over multiple needles.
Models & Baselines

● Models: GPT-4o-mini, Llama 3.2 (90B).
● Baselines: RAG-Vanilla, CoT, ReAct, Self-Reflection.
● Hybrid: NSAR+3 (NSAR + CoT + ReAct + Self-Reflection).

Experiments

Results & Analysis

Long
context

text

Query

Embedding
model

(e.g. bge-m3)
Tokenizer Extract

Symbolic
Facts

Write
Python
Code

NSAR
Prompt

Run
Python
code

Retrieval Component NeuroSymbolic Augmented Reasoning (NSAR)

LLM
Sentence
Selection Answer

NeuroSymbolic Augmented Reasoning (NSAR)

● Addresses LLM limitations in reliability and interpretability for multi-target tasks.
● NSAR Prompt guides 3 stages:

i. Symbolic Fact Extraction: e.g., FACT("Cairo", "special_magic_number",
1234567)

ii. Python Code Generation: e.g., numbers = [1234567, 9999999]; answer =
max(numbers)

iii. Final Answer Extraction: Execute code for deterministic output.

●

Retrieval Component

● Tokenize long, multilingual context into sentences using Punkt
tokenizer.

● Embed with bge-m3 embedding (multilingual, 1024-dim).
● Compute semantic distance to query; select top-k sentences

(k=3,5,10,20,50).

Sample output

1. Extracting relevant facts from the
context:
FACT(Barcelona, magic_number, 3261366)
FACT(Damascus, magic_number, 3745066)
FACT(Sofia, magic_number, 9396103)

2. Generating executable Python code:

Define the magic numbers as a dictionary
magic_numbers = { "Barcelona": 3261366,

"Damascus": 3745066,
"Sofia": 9396103 }

Find the largest magic number
largest_magic_number = max(magic_numbers.values())
largest_magic_number

Python
Interpreter

9396103

