

Enhancing Large Language Models with Neurosymbolic Reasoning for Multilingual Tasks

Sina Bagheri Nezhad, Ameeta Agrawal Portland State University, USA

Introduction

- LLMs excel in several NLP tasks but struggle with long-context, cross-lingual reasoning.
- Information is often scattered across languages and lengthy documents.
- Retrieval-Augmented Generation (RAG) helps but fails in multi-target reasoning.

Key Contributions:

- Propose NSAR framework a neurosymbolic method that merges symbolic reasoning with neural inference for verifiable, interpretable pathways.
- Develop NSAR prompt for fact extraction and Python code generation.
- Combine with CoT, ReAct, Self-Reflection for additional gains.
- Experiments show NSAR outperforms retrieval-based and neural-only methods in cross-lingual, long-context question answering tasks.

Experiments

Dataset

- Extended mLongRR dataset: Up to 512k words (really long context).
- 7 languages (English, Vietnamese, Swahili, Persian, Russian, Hindi, Arabic).
- Query in English; context in target language.
- Contexts: News articles of 2k-512k words; needles in haystack language.
- 3 "needles" (e.g., "The special magic {city} number is: {number}")

Evaluation

- Query "What is the largest special magic number?"
- Retrieve and reason over multiple needles.

Models & Baselines

- Models: GPT-4o-mini, Llama 3.2 (90B).
- Baselines: RAG-Vanilla, CoT, ReAct, Self-Reflection.
- Hybrid: NSAR+3 (NSAR + CoT + ReAct + Self-Reflection).

NeuroSymbolic Augmented Reasoning (NSAR)

